« Foundry Home Page

Date: Tuesday, June 9, 2015
Time: 11:00 am
Speaker: Mark Stockman, University of Georgia
Title: Latest Progress in Spasers
Location: 67-3111 Chemla Room


Abstract:

Nanoplasmonics deals with collective electron excitations at the surfaces of metal nanostructures, called surface plasmons. The surface plasmons localize and nano-concentrate optical energy creating highly enhanced local fields. Nanoplasmonics has numerous applications in science, technology, biomedicine, environmental monitoring, and defense.

There is an all-important need in active devices capable of generating and amplifying coherent optical fields on the nanoscale analogous to lasers and amplifiers of the conventional optics or transistors of microelectronics. Such an active device is the spaser (surface plasmon amplification by stimulated emission of radiation) [1], also called plasmonic nanolaser. We will focus on the newest ideas and review the latest experimental progress in spasers, which presently cover a wide optical spectrum from near-IR to near-UV [2-25].

We will present two new theoretical ideas in the field of spasers: spaser with electric pumping via quantum wire [26] and quantum-cascade graphene spaser [27]. We will consider an example of the latest progress in spasers [20] and some applications of spasers. Among them is a recent breakthrough in ultrasensitive detection of explosives using the spaser [21]. Another recent breakthrough to be presented is an application of the spaser as an ultrabright nanolabel and an efficient theranostic agent in biomedicine (cancer diagnostics and treatment) [28].

[1] D. J. Bergman, and M. I. Stockman, Phys. Rev. Lett. 90, 0274021 (2003).
[2] M. I. Stockman, Nat. Phot. 2, 327 (2008).
[3] N. I. Zheludev et al., Nat. Phot. 2, 351 (2008).
[4] M. T. Hill et al., Opt. Express 17, 11107 (2009).
[5] M. A. Noginov et al., Nature 460, 1110 (2009).
[6] R. F. Oulton et al., Nature 461, 629 (2009).
[7] M. C. Gather et al., Nat. Phot. 4, 457 (2010).
[8] R. A. Flynn et al., Opt. Express 19, 8954 (2011).
[9] M. J. H. Marell et al., Opt. Express 19, 15109 (2011).
[10] V. J. Sorger, and X. Zhang, Science 333, 709 (2011).
[11] C. Y. Wu et al., Nano Lett. 11, 4256 (2011).
[12] P. Berini, and I. De Leon, Nat. Phot. 6, 16 (2012).
[13] K. Ding et al., Phys. Rev. B 85, 041301 (2012).
[14] R. Ma et al., Nano Lett. 12, 5396 (2012).
[15] S. Kéna-Cohen et al., Nano Lett. 13, 1323 (2013).
[16] F. van Beijnum et al., Phys. Rev. Lett. 110, 206802 (2013).
[17] W. Zhou et al., Nature Nanotechnology 8, 506 (2013).
[18] M. T. Hill, and M. C. Gather, Nat. Phot. 8, 908 (2014).
[19] Y. Hou et al., Sci. Rep. 4, 1 (2014).
[20] Y.-J. Lu et al., Nano Lett. 14, 4381 (2014).
[21] R.-M. Ma et al., Nat. Nano 9, 600 (2014).
[22] X. Meng et al., Laser & Photonics Reviews, doi: 10.1002/lpor.201400056 (2014). [23] T. P. H. Sidiropoulos et al., Nat. Phys. 10, 870 (2014).
[24] Q. Zhang et al., Nat. Commun. 5 (2014).
[25] A. Yang et al., Nat. Commun. 6 (2015).
[26] D. Li, and M. I. Stockman, Phys. Rev. Lett. 110, 106803 (2013).
[27] V. Apalkov, and M. I. Stockman, Light Sci. Appl. 3, e191 (2014).
[28] E. I. Galanzha et al., arXiv:1501.00342, 1 (2015).