« Foundry Home Page

October 2014

Nanotubes that Insert Themselves into Cell Membranes

Researchers have helped show that short carbon nanotubes can make excellent artificial pores within cell membranes. Moreover, these nanotubes, which are far more rugged than their biological counterparts, can self-insert into a cell membrane or other lipid bilayers.

Caroline Ajo-Franklin, a Foundry staff scientist, worked with Alex Noy, a biophysicist at Lawrence Livermore National Laboratory (LLNL) used lipids to get the nanotubes the right size for a membrane channel. Lipids come together to form double-layered barriers, like the lipid bilayer found in cell membranes. When lipids are mixed with longer nanotubes, the lipids assemble around the tubes, indicating the appropriate length for a membrane-bound nanotube. Once the right-sized nanotubes are cut from the longer tube, their lipid coating allows them to infiltrate a cell membrane spontaneously, as the team demonstrated with human kidney cells and Chinese hamster ovary cells.

Read the full press release.