Molecular Foundry user Latha Venkataraman at Columbia University and colleagues have simultaneously probed two disparate electrical properties – conductance and thermopower – in some of the smallest circuits imaginable, individual molecular junctions. This work advances our understanding of charge and energy transport at the molecular level, a new frontier in nanoscale engineering.
Venkataraman’s team at Colombia used a scanning tunneling microscope to trap individual amine and pyridine molecules between a sharp gold tip and a substrate. Using a novel setup to vary temperature and electrical biases while the molecule remained trapped, the researchers simultaneously measured conductivity and thermopower, the electrical bias produced by thermal gradient.
Foundry staff scientist Jeff Neaton and colleagues compared the measurements to state-of-the-art first-principles calculations, revealing an unexpectedly complex relationship between conductance and thermopower arising from chemical details of the metal-molecule contact, not the simple relation usually assumed. These findings critically advance knowledge of molecular-level charge transport, laying the groundwork for molecular-scale engineering of thermoelectric and other energy conversion materials.