Hydrogen is the lightest and most plentiful element on Earth and in our universe. So it shouldn’t be a big surprise that scientists are pursuing hydrogen as a clean, carbon-free, virtually limitless energy source for cars and for a range of other uses, from portable generators to telecommunications towers—with water as the only byproduct of combustion.
While there remain scientific challenges to making hydrogen-based energy sources more competitive with current automotive propulsion systems and other energy technologies, researchers at the Molecular Foundry have developed a new materials recipe for a battery-like hydrogen fuel cell—which surrounds hydrogen-absorbing magnesium nanocrystals with atomically thin graphene sheets—to push its performance forward in key areas.
The graphene shields the nanocrystals from oxygen and moisture and contaminants, while tiny, natural holes allow the smaller hydrogen molecules to pass through. This filtering process overcomes common problems degrading the performance of metal hydrides for hydrogen storage.
These graphene-encapsulated magnesium crystals act as “sponges” for hydrogen, offering a very compact and safe way to take in and store hydrogen. The nanocrystals also permit faster fueling, and reduce the overall “tank” size.