A team of Foundry users used spiraling X-rays to observe, for the first time, a property that gives handedness to swirling electric patterns – dubbed polar vortices – in a synthetically layered material.
This property, also known as chirality, potentially opens up a new way to store data by controlling the left- or right-handedness in the material’s array in much the same way magnetic materials are manipulated to store data as ones or zeros in a computer’s memory.
Researchers said the behavior also could be explored for coupling to magnetic or optical (light-based) devices, which could allow better control via electrical switching.
The electronic patterns in the material that were studied at the Advanced Light Source were first revealed using a powerful electron microscope at the Foundry’s National Center for Electron Microscopy, though it took a specialized X-ray technique to identify their chirality.
The samples included a layer of lead titanate (PbTiO3) and a layer of strontium titanate (SrTiO3) sandwiched together in an alternating pattern to form a material known as a superlattice. The materials have also been studied for their tunable electrical properties that make them candidates for components in precise sensors and for other uses.
Neither of the two compounds show any handedness by themselves, but when they were combined into the precisely layered superlattice, they developed the swirling vortex structures that exhibited chirality.
The same science team is pursuing studies of other types and combinations of materials to test the effects on chirality and other properties.