This article as been adapted from this Berkeley Lab press release.
An exciting new solar material called organic-inorganic halide perovskites could one day help the U.S. achieve its solar ambitions and decarbonize the power grid. One thousand times thinner than silicon, perovskite solar materials can be tuned to respond to different colors of the solar spectrum simply by altering their composition mix.
Typically fabricated from organic molecules such as methylammonium and inorganic metal halides such as lead iodide, hybrid perovskite solar materials have a high tolerance for defects in their molecular structure and absorb visible light more efficiently than silicon, the solar industry’s standard.
Altogether, these qualities make perovskites promising active layers not only in photovoltaics (technologies that convert light into electricity), but also in other types of electronic devices that respond to or control light including light-emitting diodes (LEDs), detectors, and lasers.
“Although perovskites offer great potential for greatly expanding solar power, they have yet to be commercialized because their reliable synthesis and long-term stability has long challenged scientists,” said Foundry scientist Carolin Sutter-Fella. “Now, a path to perfect perovskites may soon be within reach.”
A recent Nature Communications study co-led by Sutter-Fella reports that solar materials manufacturing could be aided by a sophisticated new instrument that uses two types of light – invisible X-ray light and visible laser light – to probe a perovskite material’s crystal structure and optical properties as it is synthesized.
“When people make solar thin films, they typically have a dedicated synthesis lab and need to go to another lab to characterize it. With our development, you can fully synthesize and characterize a material at the same time, at the same place,” she said.
For this work, Sutter-Fella assembled an international team of top scientists and engineers to equip an X-ray beamline endstation with a laser at Berkeley Lab’s Advanced Light Source (ALS).
The new instrument’s highly intense X-ray light allows researchers to probe the perovskite material’s crystal structure and unveil details about fast chemical processes. For example, it can be used to characterize what happens in the second before and after a drop of a solidifying agent transforms a liquid precursor solution into a solid thin film.
Interested in Becoming a Foundry User?
Join our collaborative, multidisciplinary environment.
Learn more >
At the same time, its laser can be used to create electrons and holes (electrical charge carriers) in the perovskite thin film, allowing the scientists to observe a solar material’s response to light, whether as a finished product or during the intermediate stages of material synthesis.
“Equipping an X-ray beamline endstation with a laser empowers users to probe these complementary properties simultaneously,” explained Sutter-Fella.
This combination of simultaneous measurements could become part of an automated workflow to monitor the production of perovskites and other functional materials in real time for process and quality control.
Read the full press release.