Staff Scientist, Nanofabrication Facility
510.486.7081
Biography
Dr. Hammack is a Quantum Information and Condensed Matter Physicist by training that has been leading biological assay development and genomic sequencing pipelines to develop wild type and engineered bacteriophage into FDA approved antibiotic agents. Following his bachelor’s in electrical engineering and computer science at Berkeley, he received a PhD in condensed matter physics from UCSD, and subsequently was a postdoctoral fellow in the Molecular Foundry Imaging Facility under Dr. Frank Ogletree.
Following his postdoctoral work at the Molecular Foundry, he joined HGST/Western Digital as a Research Staff Member studying nanofabricated plasmonic devices for information storage on the Heat Assisted Magnetic Recording (HAMR) project, before co-founding EpiBiome, a precision microbiome company focused on developing phage based therapeutics to combat antibiotic resistance. After EpiBiome was acquired by Locus Biosciences, a CRISPR Cas synthetic biology company, Dr. Hammack lead the scientific bioinformatics and automation efforts at Locus Biosciences in collaboration with J&J’s Janssen Pharmaceuticals division, CARB-X, and the US Biological Advanced Research and Development Authority (BARDA), leading to drug candidates that are currently in clinical trials to combat recurrent urinary tract infections.
Research Interests
My research interests focus on assays with single-particle sensitivity that have a huge potential to increase our understanding of the self-assembly processes that underpin single and multicellular life. While there are many excellent devices for characterizing the properties of large ensembles of biological materials, the development of comprehensive single particle sensing nanofluidic integrated circuits capable of measuring the denatured byproducts of digested single cells will be a transformative and novel development in the fields of microbiology and molecular biology. To address these core scientific questions, my research bridges the capabilities of the Nanofabrication facility and Biological Nanostructures facility to fabricate nano-fluidic integrated circuits (NFICs) and digital microfluidic (DMF) devices that enable the resonant optical and electrical characterization of nanoparticles and biological entities on the single-particle scale.
Selected Publications
- L.M. Otto, S. Liu, R. Ng, A. Schwartzberg, S. Aloni, and A.T. Hammack. Metal-ceramic composite structures for fabrication of high power density plasmonic devices. J. Appl. Phys. 132, 213101 (2022). doi:10.1063/5.0123477
- L.M. Otto, D. Nowak, Sung Park, B.C. Stipe, and A.T. Hammack. Simultaneous multimethod scanning probe microscopy of complex nano-systems. J. Appl. Phys. 130, 024506 (2021). doi:10.1063/5.0054404
- L.M. Otto, E.A. Gaulding, C.T. Chen, T.R. Kuykendall, A.T. Hammack, F.M. Toma, D.F. Ogletree, S. Aloni, B.J.H. Stadler, and A.M. Schwartzberg. Methods for tuning plasmonic and photonic optical resonances in high surface area porous electrodes. Nature Scientific Reports 11, 7656 (2021). doi:10.1038/s41598-021-86813-y
- J.R. Leonard, Lunhui Hu, A.A. High, A.T. Hammack, Congjun Wu, L.V. Butov, K.L. Campman, and A.C. Gossard. Moiré pattern of interference dislocations in condensate of indirect excitons. Nature Communications 12, 1175 (2021) doi:10.1038/s41598-018-24061-3
- L.M. Otto, D.F. Ogletree, S. Aloni, M. Staffaroni, B. C. Stipe, and A.T. Hammack. Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers. Nature Scientific Reports 8, 5761 (2018) doi:10.1038/s41598-018-24061-3
- L.M. Otto, S.P. Burgos, M. Staffaroni, Shen Ren, Ö. Süzer, B.C. Stipe, and A.T. Hammack. Predicting scattering near-field optical microscopy of mass-produced plasmonic devices. Journal of Applied Physics 123, 183104 (2018). doi:10.1063/1.5032222
- J.R. Leonard, A.A. High, A.T. Hammack, M.M Fogler, L.V. Butov, A.V. Kavokin, K.L. Campman, and A.C. Gossard. Pancharatnam-Berry phase in condensate of indirect excitons. Nature Communications, 2158 (2018). doi:10.1038/s41467-018-04667-x
- E.L. Rosen, K. Gilmore, A. Sawvel, A.T. Hammack, S. Doris, S. Aloni, V. Altoe, D. Nordlund, T.-C. Weng, D. Sokaras, B.E.
- Cohen, J.J. Urban, D.F. Ogletree, D. Milliron, D. Prendergast, and B.A. Helms. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure. Chemical Science 6(11), 6295-6304 (2015). doi:10.1039/C5SC01474C
- Nan Zhou, Xianfan Xu, A.T. Hammack, B.C. Stipe, K. Gao, W. Scholz, and E.C. Gage. Plasmonic near-field transducer for heat-assisted magnetic recording. Nanophotonics 3(3), 141-155 (2014). doi:10.1515/nanoph-2014-0001
- 10. M. Remeika, A.T. Hammack, S.V. Poltavtsev, L.V. Butov, J. Wilkes, A.L. Ivanov, K.L. Campman, M. Hanson, and A.C. Gossard. Pattern formation in the exciton inner ring. Phys. Rev. B 88(12), 125307 (2013). doi:10.1103/PhysRevB.88.125307
- A.A. High, A.T. Hammack, J.R. Leonard, Sen Yang, L.V. Butov, T. Ostatnicky, M Vladimirova, A.V. Kavokin, T.C.H. Liew, K.L. Campman, and A.C. Gossard. Spin Currents in a Coherent Exciton Gas. Phys. Rev. Lett. 110, 246403 (2013). doi:10.1103/PhysRevLett.110.246403
- A.A. High, J.R. Leonard, A.T. Hammack, M.M Fogler, L.V. Butov, A.V. Kavokin, K.L. Campman, and A.C. Gossard. Spontaneous Coherence in a Cold Exciton Gas. Nature 483, 584 (2012). doi:10.1038/nature10903
- A. Llordes, A.T. Hammack, R. Buonsanti, R. Tangirala, S. Aloni, B.A. Helms, and D.J. Milliron. Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films. J. Mat. Chem. 21, 11631 (2011). doi:10.1039/C1JM10514K
- V.S.D. Voet, T.E. Pick, S.M. Park, M. Moritz, A.T. Hammack, J.J. Urban, D.F. Ogletree, D.L. Olynick, and B.A. Helms. Interface segregating flouralkyl-modified polymers for high-fidelity block copolymer nanoimprint lithography. JACS 133, 2812-2815 (2011). DOI: 10.1021/ja1094292
- A.G. Winbow, J.R. Leonard, M. Remeika, A.A. High, A.T. Hammack, L.V. Butov, J. Wilkes, A.A. Guenther, A.L. Ivanov, M. Hanson, and A.C. Gossard. Electrostatic conveyer for excitons. Phys. Rev. Lett. 106, 196806 (2011). doi:10.1103/PhysRevLett.106.196806
- Y.Y. Kuznetsova, M. Remeika, A.A. High, A.T. Hammack, L.V. Butov, M. Hanson, and A.C. Gossard. All-optical excitonic transistor. Appl. Phys. Lett. 97, 201106 (2010). doi:10.1063/1.4722938
- A.T. Hammack, L.V. Butov, J. Wilkes, L. Mouchliadis, E.A. Muljarov, A.L. Ivanov, and A.C. Gossard. Kinetics of the inner ring in the exciton emission pattern in GaAs coupled quantum wells. Phys. Rev. B 80, 155331 (2009). doi:10.1103/PhysRevB.80.155331
- G. Grosso, J. Graves, A.T. Hammack, A.A. High, L.V. Butov, M. Hanson, and A.C. Gossard. Excitonic switches operating at around 100 K. Nature Photonics 3, 577-580 (2009). doi:10.1038/nphoton.2009.166
- A.A. High, A.K. Thomas, G. Grosso, M. Remeika, A.T. Hammack, A.D. Meyertholen, M.M Fogler, L.V. Butov, M. Hanson, and A.C. Gossard. Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap. Phys. Rev. Lett. 103, 087403 (2009) doi:10.1103/PhysRevLett.103.087403
- A.A. High, A.T. Hammack, L.V. Butov, L. Mouchliadis, A.L. Ivanov, M. Hanson, and A.C. Gossard. Indirect excitons in elevated traps Nano Lett. 9, 2094-2098 (2009). doi:10.1021/nl900605b
- M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertholen, M.M Fogler, L.V. Butov, M. Hanson, and A.C. Gossard. Localization-delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102, 186803 (2009). doi:10.1103/PhysRevLett.102.186803
- M.M. Fogler, Sen Yang, A.T. Hammack, L.V. Butov, and A.C. Gossard. Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells. Phys. Rev. B 78, 035411 (2008). doi:10.1103/PhysRevB.78.035411
- A.T. Hammack, L.V. Butov, L. Mouchliadis, A.L. Ivanov, and A.C. Gossard. Kinetics of indirect excitons in an optically-induced trap in GaAs quantum wells. Phys. Rev. B 76, 193308 (2007). doi:10.1103/PhysRevB.76.193308
- A.A. High, A.T. Hammack, L.V. Butov, M. Hason, and A.C. Gossard. Exciton optoelectronic transistor. Optics Lett. 32, 2466-2468 (2007). doi:10.1364/OL.32.002466
- A.G. Winbow, A.T. Hammack, L.V. Butov, and A.C. Gossard. Photon storage with nanosecond switching in coupled quantum well nanostructures. Nano Lett. 7, 1349-1351 (2007). doi:10.1021/nl070386c
- Sen Yang, A.V. Mintsev, A.T. Hammack, L.V. Butov, and A.C. Gossard. Repulsive interaction in the macroscopically ordered exciton state in GaAs/AlxGa1-xAs coupled quantum well structures. Phys. Rev. B 75, 033311 (2007). doi:10.1103/PhysRevB.75.033311
- Sen Yang, A.T. Hammack, M.M. Fogler, L.V. Butov, and A.C. Gossard. Coherence length of cold exciton gases in coupled quantum wells. Phys. Rev. Lett. 97, 187402 (2006). doi:10.1103/PhysRevLett.97.187402
- A.T. Hammack, M. Griswold, L.V. Butov, L.E. Smallwood, A.L. Ivanov, and A.C. Gossard. Trapping of cold excitons in quantum well structures with laser light. Phys. Rev. Lett. 96, 227402 (2006). doi:10.1103/PhysRevLett.96.227402
- A.T. Hammack, N.A. Gippius, Sen Yang, G.O. Andreev, L.V. Butov, M. Hanson, and A.C. Gossard. Excitons in electrostatic traps. J. Appl. Phys. 99, 066104 (2006). doi:10.1063/1.2181276
- A.L. Ivanov, L.E. Smallwood, A.T. Hammack, Sen Yang, L.V. Butov, and A.C. Gossard. Origin of the inner ring in photo-luminescence patterns of quantum well excitons. Europhys. Lett. 73, 920-926 (2006). doi:10.1209/epl/i2006-10002-4
- K. Nagaoka, M.J. Comstock, A. Hammack, and M.F. Crommie. Observation of spatially inhomogeneous electronic structure of Si(100) using scanning tunneling spectroscopy. Phys. Rev. B 71, 121304 (2005) doi:10.1103/PhysRevB.71.121304