Scientific Engineering Associate, Imaging and Manipulation of Nanostructures
510.486.4713
Biography
Tom Darlington first joined the Molecular Foundry as a grad student in 2014, applying scanning near-field optical microscopy (SNOM) to low dimensional materials with Prof. Jim Schuck and Prof. Feng Wang. In 2020 he joined the Columbia University as a postdoctoral research scientist in the group of Prof. Abhay Pasupathy. In 2024 he returned to Foundry as a Scientific Engineering Associate in the Imaging Facility.
Expertise
Tom’s research focuses on ultra-high resolution optical microscopy and spectroscopy, combining conventional optical methods with scanning probe microscopy (SPM). He has led the development of novel scanning probe microscopes including optical scanning tunneling microscopy.
At the Foundry, Tom provides support for users and staff on all scanning probe microscopies, in particular to enable and develop advanced SPM measurements such as frequency modulated Kelvin probe force microscopy and time resolved SNOM to correlate structural, electronic, and dynamical material information at scales inaccessible to conventional techniques.
Selected Publications
- Matthew C. Strasbourg, Emanuil S. Yanev, Thomas P. Darlington, Kavika Faagau, Luke N. Holtzman, Katayun Barmak, James C. Hone, P. James Schuck, and Nicholas J. Borys, “Characterization of quantum dot-like emitters I programmable arrays of nanowrinkles of 1L-WSe2,” J. Appl. Phys, 136, 044301 (2024).
- E. S. Yanev, T. P Darlington, et al., “Programmable Nanowrinkle-Induced Room-Temperature Exciton Localization in Monolayer WSe2, Nat. Comm., 15, 1543 (2024).
- E. Meirzadeh, A. M. Evans, M. Rezaee, C. J. Dionne, T. P. Darlington, et al., “A few-layer covalent network of fullerenes,” Nature, 613, 71 (2023).
- M. Kapfer, B. S. Jessen, M. E. Eisele, M. Fu, D. R. Danielsen, T. P. Darlington, et al., “Programming twist angle and strain profiles in 2D materials,” Science, 381, 677 (2023).
- K. Jo, E. Marino, J. Lynch, Z. Jiang, N. Gogotsi, T. P. Darlington, et al., “Direct nano-imaging of light matter interactions in nanoscale excitonic emitters,” Nature Communications, 14, 2649 (2023).
- K. Jo, E. Marino, J. Lynch, Z. Jiang, N. Gogotsi, T. P. Darlington, et al., “Direct nano-imaging of light matter interactions in nanoscale excitonic emitters,” Nature Communications, 14, 2649 (2023).
- A. J. Sternbach, R. A. Vitalone, S. Shabani, J. Zhang, T. P. Darlington, et al., “Quenched Excitons in WSe2/α-RuCl3 Heterostructures Revealed by Multi-messenger Nanoscopy,” Nano Letters, 23, 5070 (2023)
- S. Shabani, T. P. Darlington, et al., “Ultra Localized Optoelectronic Properties of Nanobubbles in 2D Semiconductors,” Nano Letters (2022).
- K. Yao, S. Zhang, E. Yanev, K. McCreary, H. J. Chuang, M. R. Rosenberger, T. Darlington, et al., “Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Exciton-Enhanced Second Harmonic Generation,” Advanced Optical Materials, 10, 220085 (2022).
- T. P. Darlington, C. Carmesin, et al., “Imaging strain-localized exciton states in nanoscale bubbles in monolayer WSe2 at room temperature,” Nature Nanotechnology, 15, 385(2020).
- T. P. Darlington, et al., “Facile and quantitative estimation of strain in nanobubbles with arbitrary symmetry in 2D semiconductors verified using hyperspectral nano-optical imaging,” J Chem Phys. 14;153(2):024702 (2020)
- K. Yao, E. Yanev, H. J. Change, M. R. Rosenberger, X. Xu., T. Darlington, et al., ACS Nano, 14 (1), 708 (2020
- A. Krayev, C. S. Bailey, K. Jo, S. Wang, A. Singh, T. Darlington, et al., “Dry Transfer of van der Waals Crystals to Noble Metal Surfaces to Enable Characterization of Buried Interfaces,” ACS Applied Materials and Interfaces, 11 (41), 38218 (2019).
- G. Calafiore, A. Koshelev, T. P. Darlington, et al., “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Scientific Reports 7, 1651 (2017)
- C. Kastl, C. T. Chen, T. Kuykendall, B. Shevitski, T. P. Darlington, et al., “The important role of water in growth of monolayer transition metal chalcogenides,” 2D Materials, 4 (2), 021024 (2017)